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Distribution of Aflatoxin in Pistachios. 1. Lot Distributions 
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A nonparametric relation is derived between the discrete probability distribution (pi, ci}, assumed 
for toxin concentration c in individual members of a population, and the probability distribution 
{Pi(n)} of the toxin concentration in n-member samples taken from that population. Here pi is the 
probability of an individual member having toxin concentration ci, while Pi(n) is the probability of 
an n-sample exhibiting toxin concentration falling in range i of C. An information theoretic basis 
is given for the number J of indices i required for {Pi(n)}. The same number of indices is used for 
(pi, ci}; additional values, if needed, are estimated. {Pi(n)} is derived from (pi, ci} by multinomial 
Poisson statistics. Conversely, it is shown how (pi, ci} may be derived from empirical {Pi(n)} data 
when the npi are small, as is commonly the case for aflatoxin contamination of tree nuts. As a first 
approximation one obtains pi = Pi(n)fn and Ci = n * Ci, where Ci is the midpoint of range i of C. 
Higher approximations are evaluated as well. A basis is thus laid for computing {Pi(n)} for a sample 
size differing from that of the sample actually determined. The results are applied to predicting 

. the probability of a sample of any size exceeding a predetermined level C,. 

Keywords: Low-level contamination; sampling; 

INTRODUCTION 

Edible tree nuts may be infected by a deleterious 
toxin, aflatoxin, which appears to develop in the orchard 
on a very few isolated nuts. As a result, very high and 
variable levels of this toxin may be present on a very 
small proportion of nuts in a lot. Since the average level 
of aflatoxin in the lot is of regulatory concern, sampling 
presents a difficult problem. Sampling protocol for 
whole nuts (with or without shell) calls for the with- 
drawal of a sample of predetermined size (typically 4.5 
or 22.5 kg), homogenization by grinding and blending, 
and determination of the concentration C of aflatoxin 
of a subsample of the ground sample (Park and Pohland, 
1989). Analytic and subsampling errors typically result 
in a coefficient of variation in aflatoxin concentration 
of 20-30% (Whitaker et al., 1974), but sampling errors 
are severe; repeated samples may result in values that 
differ by many orders of magnitude. This is caused by 
the infrequent appearance of highly contaminated nuts 
which dominate the sample concentration. It is im- 
practical to select samples large enough to  obtain a 
representative selection of such nuts; hence, lot average 
concentrations are difficult to estimate. What is wanted 
is then the probability that C will exceed some preset 
action or acceptance level, C,. Although the industry 
is generally aware of these problems, there is little 
appreciation that these probabilities depend critically 
on the sample size, n; certainly the form of the depen- 
dence on n does not seem to be understood. There are, 
in fact, testing protocols in use for which the sample 
size is taken proportionally to  the lot size (FDA, 1986). 
In summary reports the actual sample size is frequently 
not reported or available (Wood, 1989). The emphasis 
is entirely on toxin level. 

The relation between sample size, n nuts, sample 
concentration, C, and the probability, Pi(n), that this 
concentration falls within a predetermined range [bin 
il of C is based on the underlying probability distribu- 
tion function (pdf), fc) ,  of aflatoxin concentration, c, in 
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individual nuts. (Throughout this paper, upper case will 
be used to refer to things related to C, the n-sized 
sample concentration. The corresponding lower case is 
used for things related to c, the concentration in a single 
nut. The dependence of C distributions on the param- 
eter n is shown explicitly.) fc) is taken as a discrete 
function, represented as a set (pi, ci} ,  with probability 
pi of a single nut having aflatoxin concentration ci. The 
relation of {Pi(n)} to  (pi, ci} is derived in the next 
section. It will allow, in principle, estimation of {Pi(n)} 
by the measurement of a large number of samples, all 
of size n, followed by the computation of fc) and the 
subsequent calculation of {Pi(n)> for a different n. [The 
notation {} will be used t o  designate a set, here all 
Pi(n) for a given n and fixed binning. We shall refer to 
this set as the probability distribution (not the pd0.1 
This concept is then taken one step further to compute 
the probability, R(n, Ca), of rejecting an n-nut sample. 
Whitaker and co-workers (Whitaker et al., 1972, 1994) 
assumed a parametric pdf, the negative binomial, and 
studied sampling as it applied to peanuts. Experimen- 
tal data were fitted parametrically, and an adequate fit 
was found between theoretical and experimental dis- 
tributions. The present approach is nonparametric in 
the sense that the same number of parameters is used 
to describe f c )  as Pi(n) so that no information is lost. 
Only in estimating the limits of some of the approxima- 
tions used is a functional form applied. 

LOT DISTRIBUTION 

Contamination at a Single Level. To derive the 
relation expressing Pi(n) in terms of fc),  it is instructive 
to  first consider the case where all contaminated nuts 
have the same aflatoxin level, c1, and occur with a 
probability pl, a fraction PO = 1 - p1 being noncontami- 
nated. This case was first treated by Schade et al. 
(1975). If one selects an n-nut sample from such a lot, 
the probability of such a sample containing XI contami- 
nated nuts is given by a binomial distribution which 
may be approximated by a Poisson distribution (Feller, 
1957, p 142) 
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otherwise. Again, the fraction of uncontaminated 
samples is given bypo = 1 - Ci>opi. The ci are placed 
at the center of the Bi but, for reasons discussed below, 
an offset, log n, is used to index ci, i.e. log ci log n + 
0.5 log (Ci+ * Ci-), i.e. the spacing of log ci is again A. 
(There is no biological basis for restricting the contami- 
nation levels to J discrete levels. However, the error 
in using 6 functions is no worse than the precision with 
which C can be measured.) If an n-nut sample is drawn 
at random from such a lot, the probability of obtaining 
X I  nuts of type 1, x2 nuts of type 2, etc., in the sample is 
given by a multinomial distribution which is approxi- 
mated by a product of Poissons (Feller, 1957, p 162). 

P(n,  xl) = exp(-np,) * (nplY1/xl! (1) 

The Poisson approaches the binomial distribution as 
n - w, with np fixed. However, even for n as low as 
10, term for term the two distributions differ by less 
than 0.021 whenp = 0.1 and x < 2 and much less when 
p is smaller or x is larger. In experimental work on tree 
nuts sample sizes as small as 10 are not uncommon. 
While the binomial is more accurate and converges to 
zero more rapidly as x increases, it requires two 
parameters, n andp, while the Poisson requires but one, 
np. Hence, the latter is easier to describe, generalize, 
and investigate. It is used here. 

Such an n-nut sample will have a sample concentra- 
tion (wlw basis) 

C = x1 * cl * w I (n * w )  = xl * clln (2) 

where w is the weighthut. When npl is small, the 
likelihood of obtaining a sample with a single contami- 
nated nut, P(n, I), will be approximately proportional 
to npl, while the probability of obtaining a sample with 
higher concentration, XI > 1, will vanish, since it 
involves higher powers of npl. The mean of the C 
distribution becomes E(C) = E(xd * crln = (npl) * clln 
= PI * c1, the sampling variance V,(C) = V(x1) * (c1/n)2 
= npl * (cllnP = PI * cI2/n, where E is the expectation 
function. From the coefficient of variation indicated in 
the previous section, the variance due to  subsampling 
and analysis, V,,,, amounts to (25%12 * (npl * cl/nY = 
0.0625 ( P I  * c1P. In the analysis to follow, npl will be 
‘1, hence V,,, can be ignored. The probability of an 
uncontaminated sample, Pdn), is given by exp(-npl) = 
exp[-E2(C)N(C)l. From E(C), n, and Pdn) or V(C), one 
could deduce PI and CI. 

Distributed Contamination. When one measures 
C for a set of n-sized samples taken from a single lot of 
tree nuts or from a set of lots with distributions believed 
to be the same, one finds that the C distribution does 
not match the one predicted above; in particular, Pdn) 
is smaller than that predicted above. The above con- 
cepts need to be generalized to more than a single level 
of contamination. The number of levels J which need 
to be considered is determined by the number of 
distinguishable levels of C. This number depends on 
the dynamic range and precision of C. The dynamic 
range of C is limited by the minimum detectable level 
CO of aflatoxin (currently approximately 0.03 ng/g) and 
the maximum level C,, sustainable by a single nut 
(which appears to be about lo6 ng/g or a little more) or 
approximately 7.5 decades. The precision was indicated 
above to be approximately 25%, from which it follows 
that a half-decade in C (approximately a factor of 3) 
covers &2 SD (1 f 2 * 25% or 0.5-1.5). Thus, the 
experimental data can be expressed as J = 7.5/0.5 = 
15 independent probabilities Pi(n), corresponding to J 
logarithmic bins Bi of fixed size A = loglo Ci+lCi- = 0.5, 
where Ci+ and Ci- = C;-l+ are the limits of Bi. The 
probability of an uncontaminated sample, C < CO, 
becomes Pdn) = 1 - Ci>o Pi(n). 

The lot distribution is now modeled as a collection of 
nuts with a fraction pi having aflatoxin concentration 
ci, i = 1, ..., J and a fraction po uncontaminated. 
Mathematically, this amounts to using for a pdf 

where Q(c - ci) is the Dirac 6 function which integrates 
to unity for any range that includes ci and to zero 

This sample will exhibit a sample concentration 

C = (xl * c1 + x2 * c2 + ... + xJ * cJ)/n ( 5 )  

as long as the weighthut is independent of i [strictly, 
units of c are ng of aflatoxidweight of average nut (in 

Finally, to obtain Pi(n), one considers all combinations 
ofxl, x2, ..., XJ for which C, as computed using eq 5, falls 
into bin Bi, computes P(n,xl,xz, ...,x~ ) for each combina- 
tion by use of eq 4, and sums the P’s. Formally 

Pi(n) = C...,xl, x2, ...xg (n; ..., xl, x2, ..xJ) I 

g)l. 

Ci- -= C < Ci+ (6) 

The index notation in eq 6 takes explicit account of the 
fact that nuts at c, < n * C,- may well contribute toward 
C, as long as x, is large enough. In particular, nuts for 
which c, < n * CO, i < 0, may contribute toward B,. (The 
index i = 0 remains reserved for uncontaminated nuts.) 
Strictly, eq 3 should include i < 0 terms in the sum as 
well. Such terms appear only to second order, however 
(see below). On the other hand, i > J need not be 
considered, as c, < Cm,. Expression 6, upon substitu- 
tion of eqs 4 and 5, is then the expression of the P,(n) in 
terms of n and (p,, e,}. This sample probability, while 
laborious to  compute, will only depend on the set of np, 
and the bin limits. The approach is then exactly the 
same as for the single-level contamination case. One 
estimates {Pl(n)} from the fraction of samples in each 
bin B,. [No distinction is made here between {Pz(n)} and 
the estimate thereof. Which is meant will be clear from 
the context.] Next one computes @,, c,} as described 
below, which, in turn, allows the computation of the 
{P,(n)} at any other n through the use of eq 6. 

From eqs 5 and 6 one has E(C) = C,p,*c, and V(C) = 
Czpz * cF/n. [In evaluating V(C), the covariance terms 
-n * p, * pJ (Wilks, 1962, p 139) are negligible since p, 
<< 1, all i > 0 (see also be1ow)l. Algebra yields (n * C,p,) 
* V(C) - E2(C) = C,,p, * pJ * (c, - c,)~ > 0. Combining 
the last expression with Pdn) = exp(-n * Cltopr), one 
has, for any distributed contamination, Pdn) < 
exp( -E2(C)N(C)). 

Sparse Approximation. What is needed is the 
inverse of eq 6, an expression for b,, c,} in terms of 
(Pz(n)}, since the latter can be estimated from experi- 
ment. Because of the presence of the p,<o terms, 
discussed above, there are morep, than P,(n). A unique 
inversion does not exist. However, it will follow below 
that i < 0 terms are only of interest t o  second order, 
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and hence the (Pi.0) may be estimated from the (Pi.0) 
without actually solving for them. Even with this 
proviso, inversion is dificult as these expressions are 
nonlinear (exponential in eq 6 or polynomial of order n 
if the multinomial expression is used). There exists, 
however, a common situation when the equations 
separate and become linear. If the sample size n is 
chosen to be small compared to llpi for all i except i = 
0, then all npi << 1, i > 0, and P(n,xl,xz ,...) will 
substantially vanish for all cases except when one of 
the xi = 1 and all of the other xi = 0, since all of the 
latter will involve products of the npi. The only terms 
contributing in eq 6 will correspond to samples that 
contain only a single contaminated nut. This is, of 
course, but a generalization of the single-level contami- 
nation, discussed above, where P(n, I) dominated P(n, 
>I) when npl was small. (Note that the use of the 
Poisson approximation requires that all pi << 0.1 to keep 
the necessary n > 10. Otherwise, the multinomial 
expression must be used.) If a single nut is the sole 
nut that is contaminated at level ci, eqs 5 and 6 reduce 
to 
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Ci = ci/n or ci = n * Ci (5’) 

where Pi(n) = exp(-n * Cj>opj) * npi e npi or 

pi = Pi(n)ln (6’) 

We refer to the situation described by eqs 5’ and 6‘ as 
“sparse”. Expression 5’ is the basis for choosing loga- 
rithmic binning and the shift of the index i between the 
log c and log C axis. Expression 6‘ reflects the fact that 
an n-sized sample is n times as likely to contain this 
nut. Equation 6 does not apply to uncontaminated 
nuts; PO is given by 1 - Ci>opi. In brief, in the sparse 
limit, if log Pi(n) is plotted against log C,  then log pi 
can be obtained by shifting right and down by log n. A 
direct consequence of eqs 5’ and 6’ is the relation 
between Pi(n)’s a t  two different sample sizes. A little 
algebra yields 

(7’) 

if y = log(Pi(n) lPi-l(n))Aog(Ci/Ci-1) is constant between 
Ci and (ndnl) * Ci. 

Note that in the sparse approximation J is reduced 
by log n and the pi.0 do not appear at all. No samples 
can be expected to exhibit C > C,,ln and, indeed, no 
such samples have ever been reported for tree nuts. 
Conversely, no evidence would be obtained for indi- 
vidual nuts containing aflatoxin concentration less than 
n * CO. To obtain data on nuts at low aflatoxin 
contamination, very small samples, even single nuts (n 
= 11, would need to be analyzed to avoid dilution. 

Limits of the Sparse Approximation. While the 
sparse approximation will always hold in the limit as 
npi - 0 for all i > 0, it is of interest to know to what 
extent it may be used in practice, i.e. how much of an 
error is made in using eq 6’ instead of eq 6. Equation 
6’ uses but a single term of eq 6 and approximates the 
exp function as unity. To evaluate this error, consider 
a specific bin Bi and ask which cj’s must be considered 
in computing the total sample aflatoxin content to cause 
it to fall into Bi [and hence contribute toward Pi(n)l. In 
general, no cj, j > i, need to  be considered since even a 
single such nut would cause the sample to fall into a 
bin Bjr j > i. Levels cj, j < i, may contribute, however. 
How likely combinations containing such nuts are will 

Pi(nJ 1 nz1-Y = Pi(nl) I nll-Y 

Table 1. Pi(n), Exact Value (Expression 6V 
Sparse Approximation (Expression 6’) 

Y 
A = loglo 2.0 0.0 0.2 0.4 0.6 0.8 

0.05 0.97 1.00 1.03 1.09 1.20 
0.1 0.94 0.98 1.04 1.16 1.37 
0.2 0.86 0.91 1.00 1.16 1.44 
0.3 0.76 0.82 0.90 1.03 1.21 
0.4 0.67 0.71 0.76 0.83 0.85 

npi 

Y 
A = loglo 3.16 0.0 0.2 0.4 0.6 0.8 

npi 
0.05 0.97 0.99 1.01 1.04 1.13 
0.1 0.95 0.97 1.01 1.10 1.41 
0.2 0.89 0.93 1.02 1.25 1.98 
0.3 0.83 0.88 1.01 1.33 2.00 
0.4 0.77 0.83 0.97 1.28 1.63 

Y 
A = log10 5.0 0.0 0.2 0.4 0.6 0.8 

nppi 
0.05 0.98 0.98 0.98 1.01 1.13 
0.1 0.95 0.96 0.98 1.08 1.42 
0.2 0.90 0.93 1.01 1.23 2.11 
0.3 0.86 0.89 1.02 1.30 2.40 
0.4 0.81 0.86 0.99 1.32 2.16 

depend on the npj, as well as on A. One needs to 
estimate just how many j are needed to include all 
combinations of importance. If npj is not too large and 
cjlci is small enough, it would take an inordinate 
number of lightly contaminated nuts to affect Pi(n) and 
this would be very unlikely. As a result, the sum 6 
converges rapidly if treated as a series in the j index. 
In practice, i L j L i - 4 is sufficient to obtain a good 
estimate of Pi(n) for the parameter ranges considered. 

It has not been possible to analytically evaluate this 
parametric dependence. It was therefore done numeri- 
cally. A c++ code was written to  exhaustively evaluate 
all terms arising from i ~j I i - 4. Three parameters 
were considered. The quantity npi expresses the rapid- 
ity of convergence of the Poisson or, in effect, n. A = 
log cilci-1. The size ofpj  at lower bins is expressed as 
y -log(pj/pj-l)Aog(cjlcj-l), averaged overj = 0, ..., 4. 
The ranges explored were 0 I npi I 0.4, 0 I y I 0.8, 
and log 2 I A I log 5. These ranges, by and large, cover 
all cases of practical interest in tree nuts. A value of 
npi less than 0.2 is generally what is wanted. The 
extension to 0.4 covers extreme cases. Unpublished 
data for pistachios suggest a value of 0.4 for y ,  although 
in limited regions of c values as large as 0.8 may occur 
[see Schatzki (1995)l. As indicated above, the size of A 
will be set by the analytic and subsampling precision; 
A = log 2 would correspond to  (Vs,,)0.5 = 17%, log 5 to 
33%. The code systematically and exhaustively covers 
all possible combinations and may be obtained in source 
form from Appendix A (supplementary material) or from 
the anonymous ftp server aggie.pw.usda.gov as file pub/ 
dropbox/Pin.cpp. It evaluates eq 6 at the rate of 100 000 
nut combinations/min, running on a PC486DW25, when 
compiled under BorlandC (Borland International, Inc., 
Scotts Valley, CA). The results, expressed as the result 
of evaluating eq 6 instead of using eq 6’, are shown in 
Table 1. These results were obtained using the Poisson 
expression (eq 1). A recomputation of the entries, using 
instead of the Poisson the binomial distribution with n 
= 10 and A = loglo 3.16, showed that entries changed 
less than 3%. 
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The results of Table 1 can be used to estimate the 
region of applicability of eq 6’ or to correct eq 6‘. [In 
practice, the value of npi to use would be estimated from 
Pi(n), the value of y from log Pin) IPj-i(n), averaged over 
j = 0, ... 4, before correction.] The calculations leading 
to  Table 1 also reveal that combinations containing any 
nuts at ci or ci-I contribute 50% or more t o  Pi(n) if Pi(n) 
I 0.4, within the parameter ranges explored. This 
verifies the assertion that within this range it is indeed 
true that sample aflatoxin content is largely due to but 
a few highly contaminated nuts rather than many 
lightly contaminated ones. This information is of 
importance to research in aflatoxin elimination as it 
indicates how much can be gained by removing only 
highly contaminated nuts. 

ACCEPTANCE TESTS AND SAMPLE SIZE 

The acceptance level, C,, is generally set by the buyer 
or regulator as the desired maximum lot average, E(c). 
As noted, the measured sample concentration, C, has a 
large variance and is thus a poor indicator of E(c) unless 
npi is large, all i > 0, which is seldom the case. Two 
situations arise. It nuts are plentiful, but analysis cost 
is high, one needs to know what the chances are of a 
lot being rejected on the basis of a single analysis, 
expressed as R(n,C,). The opposite situation arises 
when the total material available for analysis, given by 
N * n, is limited. In this case, one seeks the optimum 
way of dividing the N * n nuts, i.e. should N or n be 
large. 

In the single-analysis case, R(n, CJ = Ci’Pi(n), where 
the primed sum runs from the bin containing C, to =. 
The dependence of R(n, CJ on C,  alone can be obtained 
directly from the empirical probability distribution 
which estimates the (Pi(n)}, assuming it is available; 
none of the calculations presented here are needed. The 
present calculations find use in obtaining the depen- 
dence of R(n, Cd on n. At low n, where eq 6‘ applies, 
one has R(n, CJ = n * Ci’pi. As n is increased, the first 
factor increases proportionally, but the primed sum 
decreases as it extends over a more and more restricted 
range of c > n * C,. Use of eq 6 ,  along with the 
knowledge that y < 1 in all observed cases, indicates 
that the rejection rate will increase with n, but less than 
proportional to n. When n is somewhat larger, expres- 
sion 6 can be used instead of eq 6‘ to evaluate Pin) and 
thus R(n, CJ. No simple .expression results and nu- 
merical integration must again be applied. The general 
conclusions still follow. At yet larger n the convergence 
of expression 2, or its extension, is no longer of practical 
use. The sample mean remains the lot average con- 
centration, while the variance decreases as lln. It 
follows that the rejection rate will approach 1 as n - 00 
if and only if the lot average exceeds C,. If it does not, 
R(n, CJ may peak as n increases but must eventually 
approach zero. 

When one has a limited number of nuts to analyze, 
is there something to be gained by analyzing them as 
N small n-sized samples? If ck is the sample concen- 
tration measured on the Kth sample, one would 
estimate the lot average from XkCklN. Since E(Cd = 
Xipi * ci, E(C) = N * E(Cd1N = Xipi * ci, independent of 
n or N. Further, the square of the standard error of 
C = & V ( c d / P  = ZkXi(pi * c,2/n)/W = 
N * Ci@i * ~ ,2 ) /n  IN2 = Ci(pi * c,2)/(n * N) and hence 
also independent of the divlsion of the samples. Run- 
ning many small samples thus does not help in defining 
the lot average but is essential if one wishes to obtain 
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information about the variance of this average or about 
the aflatoxin lot distribution or if one wants information 
a t  small c. 

NOMENCLATURE 
multiplication. Multiplication is never implied, 

except for npi 
the ith bin of C 
n * (Ci+ * Ci-)0.5, ith aflatoxin level of single nuts 

in the lot, in ng of aflatoxidwt of average nut 

aflatoxin concentration in a sample, wlw basis 
detection limit 
highest sample concentration at which a lot will 

be accepted 
upper and lower bounds of bin Bi 
exponential function, 
expectation value, E2()  = E ( )  * E ( )  
probability distribution function (pdf) of con- 

bin index 
number of distinguishable levels of C, upper 

logarithm base e and base 10, respectively 
number of nuts in a sample 
number of samples 
fraction of contaminated single nuts at aflatoxin 

probability that an n-nut sample will fall into 

fraction of N n-nut samples that fell into bin Bi 
probability that an n-nut sample will have 

undetectable aflatoxin 
probability of choosing an n-nut sample with x 

contaminated nuts, the Poisson distribution 
probability of rejecting an n-nut sample when 

the acceptance level is CQ 
variance 
sampling variance 
subsampling and analytic variance (Whitaker 

weighthut 
number of contaminated nuts in a sample at 

n * pi 

(g) 

tamination of single nuts in the lot 

limit of i 

level ci 

bin Bi 

et al., 1974) 

aflatoxin level ci 
-log(pi /pi-3 / A  
width of logarithmic bins in C; thus, log Ci I Ci-I 

= log C i / C i - 2  

indicates a set 
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